THEEM COLLEGE OF ENGINEERING, BOISAR Approved By AICTE (New Delhi) Government of Maharashtra & DTE Affiliated To University of Mumbai ▲ Village Betegaon, Near Union Park, Boisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, •Telefax: (02525) 284 927 •Email ID: info@theemcoe.org •Website: www.theemcoe.org ## PO's and CO's ## Department of Automobile Engineering: - ### PO's Engineering Graduates will be able to: PO1. Engineering Knowledge: Apply the knowledge of science, mathematics, engineering fundamentals and engineering specialization for research, innovation and solving automobile engineering problems. PO2. Problem Analysis: Use the basic principles of natural science, mathematics and engineering for identifying and analyzing the automobile engineering problems to reach the suitable conclusions. PO3. Design/Development of Solutions: Design solutions for automobile engineering problems to meet the specified needs with appropriate consideration to the environment, public health and safety. PO4. Conduct Investigations of Complex Problems: Use research-based knowledge including design of experiments, data interpretation and synthesis of information to provide valid conclusions. PO5. Modern Tool Usage: Select the appropriate techniques, resources, modern engineering including modelling and prediction for automobile engineering activities with an understanding of the limitations. PO6. The Engineer and Society: Apply reasoning and logical thinking relevant to automobile engineering with understanding of consequent responsibilities towards societal, health, safety, legal and cultural issues. PO7. Environment and Sustainability: Understand the cause of professional engineering solutions in societal and environmental contexts to conserve suitable environment for sustainable development. PO8. Ethics: Apply ethical principles, commit to professional ethics and responsibilities and norms of the automobile engineering. PO9. Individual and Teamwork: Function effectively as an individual or as a member or leader in diverse teams and in multidisciplinary settings. PO10. Communication: Communicate effectively with engineering community in automobile engineering activities, be able to comprehend, write effective reports, design documentations and make effective presentation with clear instructions. PO11. Project Management and Finance: Manage projects in multidisciplinary environment with the skill of handling monetary resources in one's own work. PO12. Life-long Learning: Recognize the need for life-long learning in the broadest context of technological change. #### CO'S | | Applied Mathematics | Demonstrate the ability of
using Laplace Transform in
solving the Ordinary
Differential Equations and
Partial Differential Equations | Demonstrate the ability of
using Fourier Series in
solving the Ordinary
Differential Equations and
Partial Differential Equations | Solve initial and boundary
value problems involving
ordinary differential
equations | Identify the analytic function,
harmonic function,
orthogonal trajectories | Apply bilinear
transformations and
conformal mappings | Identify the applicability of theorems and evaluate the contour integrals. | |-------|--------------------------------|--|---|---|---|---|---| | | Thermodynamics | Demonstrate application of
the laws of thermodynamics
to wide range of systems. | Write steady flow energy equation for various flow and non-flow thermodynamic systems | Compute heat and work interactions in thermodynamics systems | Demonstrate the interrelations between thermodynamic functions to solve practical problems. | Use steam table and mollier chart to compute thermodynamics interactions | Compute efficiencies of heat engines, power cyclesetc. | | Sem 3 | Strength of Materials | Demonstrate fundamental
knowledge about various
types of loading and
stresses induced. | Draw the SFD and BMD for different types of loads and support conditions. | Analyse the stresses induced in basic mechanical components. | Estimate the strain energy in mechanical elements. | Analyse the deflection in beams. | Analyse buckling and bending phenomenon in columns, struts and beams. | | | Production Process I | Demonstrate understanding of casting process | Illustrate principles of forming processes | Demonstrate applications of
various types of welding
processes. | Differentiate chip forming processes such as turning, milling, drilling, etc. | Illustrate the concept of
producing polymer
components and ceramic
components | Distinguish between the conventional and modern machine tools. | | | Material Technology | Identify various crystal imperfections, deformation mechanisms, and strengthening mechanisms | Demonstrate understanding of various failure mechanisms of materials. | Interpret Iron-Iron carbide phase diagram, and different phases in microstructures of materials at different conditions | Select appropriate heat treatment process for specific applications. | Identify effect of alloying elements on properties of steels | Illustrate basics of composite materials, Nanomaterials and smart materials. | | | Applied Mathematics
IV | Solve the system of linear equations using matrix algebra with its specific rules | Demonstrate basics of
vector calculus | Apply the concept of
probability distribution and
sampling theory to
engineering problems | Apply principles of vector calculus to the analysis of engineering problems | Identify, formulate and solve engineering problems | Illustrate basic theory of correlations and regression | | | Fluid Mechanics | Define properties of fluids and classification of fluids | Evaluate hydrostatic forces
on various surfaces and
predict stability of floating
bodies | Formulate and solve equations of the control volume for fluid flow systems | Apply Bernoulli?s equation to various flow measuring devices | Calculate resistance to flow of incompressible fluids through closed conduits and over surfaces | Apply fundamentals of compressible fluid flows to relevant systems | | Sem 4 | Industrial Electronics | Illustrate construction,
working principles and
applications of power
electronic switches | Identify rectifiers and
inverters for dc and ac motor
speed control | Develop circuits using OPAMP and timer IC555 | Identify digital circuits for industrial applications | Illustrate the knowledge of
basic functioning of
microcontroller | Analyse speed-torque
characteristics of electrical
machines for speed control | | | Production Process II | Demonstrate understanding
of metal cutting principles
and mechanism | Identify cutting tool geometry
of single point and multipoint
cutting tool | Demonstrate various concepts of sheet metal forming operations | Demonstrate concepts and use of jigs and fixtures | Illustrate various non-
traditional machining
techniques | Illustrate concepts and applications of additive of manufacturing | | | Kinematics of
Machinery | Define various components of mechanisms | Develop mechanisms to provide specific motion | Draw velocity and acceleration diagrams of various mechanisms | Draw Cam profile for the specific follower motion | Analyse forces in various gears | Select appropriate power transmission for specific application | | | Internal Combustion
Engines | Demonstrate the working of
different systems and
processes of S.I. engines | Demonstrate the working of
different systems and
processes of C.I. engines | Illustrate the working of
lubrication, cooling and
supercharging systems. | Analyse engine performance | Illustrate emission norms and emission control | Comprehend the different technological advances in | engines and alternate of | | Mechanical
Measurements and
Control | Classify various types of static characteristics and types of errors occurring in the system. | Classify and select proper
measuring instrument for
linear and angular
displacement | Classify and select proper
measuring instrument for
pressure and temperature
measurement | Design mathematical model of system/process for standard input responses | Analyse error and differentiate various types of control systems and time domain specifications | Analyse the problems associated with stability | |-------|--|--|---|--|--|--|---| | Sem 5 | Heat Transfer | Identify the three modes of
heat transfer
(conduction,
convection and radiation). | Illustrate basic modes of heat transfer | Develop mathematical
model for each mode of heat
transfer | Develop mathematical
model for transient heat
transfer | Develop mathematical model for transient heat transfer | Analyse different heat exchangers and quantify their performance | | | Automotive Systems | Identify different automotive
systems and subsystems. | Identify different automotive components. | Illustrate working and
functions of various
automotive components | Illustrate working and function of electric drive lines. | Comprehend working of
Special vehicles through
case study. | Identify and Demonstrate different vehicle layouts. | | | Press Tool Design | Demonstrate various press
working operations for mass
production of sheet metal
parts | Identify press tool
requirements to build
concepts pertaining to
design of press tools | Prepare working drawings
and setup for economic
production of sheet metal
components | Select suitable materials for different elements of press tools | Illustrate the principles and
blank development in bent &
drawn components | Elaborate failure
mechanisms of pressed
components, safety aspect
and automation in press
working | | | Chassis and Body
Engineering | Illustrate different types of
Vehicle structures | Comprehend various loads acting on vehicle body. | Illustrate different vehicle body styles. | Classify different materials related to vehicle body. | Discuss Aerodynamic
concept related to vehicle
body | Illustrate importance of thin
walled structures in vehicle
body elements. | | | Machine Design I | Demonstrate understanding
of various design
considerations | Illustrate basic principles of machine design | Design machine elements
for static as well as dynamic
loading | Design machine elements
on the basis of strength/
rigidity concepts | Use design data books in designing various components | Acquire skill in preparing
production drawings
pertaining to various design | | Sem 6 | Finite Element
Analysis | Solve differential equations using weighted residual methods | Develop the finite element equations to model engineering problems governed by second order differential equations | Apply the basic finite
element formulation
techniques to solve
engineering problems by
using one dimensional
elements | Apply the basic finite
element formulation
techniques to solve
engineering problems by
using two dimensional
elements | Apply the basic finite
element formulation
techniques to find natural
frequency of single degree
of vibration system | Use commercial FEA
software, to solve problems
related to mechanical
engineering | | | Mechanical Vibrations | Develop mathematical model to represent dynamic system. | Estimate natural frequency of mechanical system. | Analyze vibratory response of mechanical system. | Estimate the parameters of vibration isolation system. | Balance an existing
unbalanced rotating and
reciprocating system
completely/partially. | Comprehend the applicatio of condition monitoring and fault diagnosis on a live project/case study. | | | Mechatronics | Identify the suitable sensor
and actuator for a
Mechatronics system | Select suitable logic controls | Analyse continuous control
logics for standard input
conditions | Develop ladder logic programming | Design hydraulic/pneumatic circuits | Design a Mechatronics system | | | Automotive Materials | Identify the need for new alternative materials to improve efficiency of automobiles. | Distinguish between the
materials requirements for
various types of
automobiles. | Estimate the role of different
classes of materials for
various automotive systems | Select proper material while designing any automotive subsystem. | Select advanced materials for specific automobile components. | Comprehend Ashby charts
for material selection | | | Chassis Body
Engineering | Design and implement
knowledge practically of
Vehicle structures | Develop efficient and safe designs with consideration of all constraints. | | ii. | | | | | CAD/CAM/CAE | Identify proper computer graphics techniques for geometric modelling. | Transform, manipulate
objects and store and
manage data. | Prepare part programming
applicable to CNC
machines. | Use rapid prototyping and tooling concepts in any real life applications. | Identify the tools for Analysis of a complex engineering component. | | | Sem 7 | Automotive Design | Design automotive component to meet desired needs | Apply the fundamental
knowledge of Applied
Mechanics, Strength of
Materials, Engineering
Materials and Theory of
Machine for actual design
problems | | | | | | | Product Design and
Development | To design the products as
per the customer/industry
requirements | To apply product design tools and techniques | | | | | | | Transportation
Management Motor
Industry | To improve existing
transport management
systems | To implement advance techniques in traffic management | | | | | | | Project I | Do literature
survey/industrial visit and
identify the problem | Apply basic engineering fundamental in the domain of practical applications | Cultivate the habit of working in a team | Attempt a problem solution in a right approach | Correlate the theoretical and
experimental/simulations
results and draw the proper
inferences | Prepare report as per the standard guidelines. | | | Autotronics | Practically identify different
automotive Electronics
systems and subsystems. | Practically identify and
demonstrate Systems like
Battery, Alternator, Dynamo,
Starter Motors, and Sensors
etc. | | | | | | Sem 8 | Vehicle Dynamics | Ability to design automotive component to meet desired needs. | Competence to apply the fundamental knowledge of Applied Mechanics, Strength of Materials, Engineering Materials and Theory of Machine for actual design problems. | Develop analytical abilities to give solutions to automotive design problems. | | | | | | Vehicle Maintenance | Effectively use automotive diagnostic tools in industries. | Improve existing vehicle maintenance practices in industries. | | | | | | | Vehicle Safety | Understand vehicle design from safety point of view | Apply the concepts of
accident reconstruction
analysis in real world | | | | | | | Project II | Do literature
survey/industrial visit and
identify the problem | Apply basic engineering fundamental in the domain of practical applications | Cultivate the habit of working in a team | Attempt a problem solution in a right approach | Correlate the theoretical and experimental/simulations results and draw the proper inferences | Prepare report as per the standard guidelines. | ### THEEM COLLEGE OF ENGINEERING, BOISAR Approved By AICTE (New Delhi) Government of Maharashtra & DTE Affiliated To University of Mumbai ▲ Village Betegaon, Near Union Park, Boisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, ◆Telefax: (02525) 284 927 ◆Email ID: info@theemcoe.org ◆Website: www.theemcoe.org ### PO's and CO's #### Department of Civil Engineering: - #### PO's A graduate of Civil engineering program will be able to: PO1. Apply the knowledge of engineering, science and mathematics for solving problems in all areas of civil engineering. - PO2. Understand and analyze civil engineering problems and to reach a suitable conclusion by using basic principle of mathematics, science and civil engineering fundamentals. - PO3. Develop solutions for civil engineering problems and design a competent system or process that reach the particular requirements considering social and environmental aspects. - PO4. Apply research based knowledge and experiments, analysis and interpretation of data and reach a valid conclusion. - PO5. Use and apply advance civil engineering equipments and modern techniques including prediction and modeling to complex engineering activities with understanding of limitations. - PO6. Apply logical thinking to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the civil engineering practice. - PO7. Able to understand the effect of civil engineering solution to the society and practice the sustainable development through knowledge obtained from civil engineering studies. - PO8. Apply ethical principle and professional ethics, responsibilities and norms of the civil engineering practice. - PO9. Function effectively as an individual, and as a member or a leader in civil engineering projects, multidisciplinary settings and among the technical experts. PO10. Able to communicate effectively with their peer groups, to write effective reports and prepare documentations, make effective presentation, and follow instructions clearly. - PO11. Understand of management principles and apply them in multidisciplinary environment to manage large construction project. - PO12. Recognize the need for long life learning to face locally & globally challenging environment. ## CO'S | | - 4 | | | | <u>CO'S</u> | | | | |-----|-----------------------------------|--|--|--
--|--|---|-----| | | Applied Mathematics- | Students will be understand
the basic concept of Laplace
transform | Students will be able to apply
linear transformation and
conformal mapping. | Students will evaluate contour
integral and solve equation
using Fourier integral. | Students will solve initial and B.V.P using ordinary differential equation and will be able to understand the concept of co-relation regression. | | | | | • | Surveying I | Students will understand
basic principles, objectives
and classifications of
surveying and will be able to
perform lines measurements
by chain surveying atong with
ranging, offsetting. | | Students will get the knowledge of different leveling concepts and will be able to find reduced levels at any point using different leveling instruments. | Students will plot contour justifying
various characteristics and shall
pot travenes using plane table and
compute area of survey plot and
valume of earthwork using different
computational methods. | theodolite operation and able to
find reduced level and angular
measurements using different | Students will understand
tacheometry methods and
able to find linear and angular
measurements in both
vertical and horizontal
direction. | | | | Strength Of Material | Student will be able to
understand the concept of
simple stress, strain and
strain energy. | Student will calculate the
shear force and bending
moment for various types of
flexural members. | Student will understand the
principle planes, stresses and
shear stresses in beam. | Students will understand the theory of simple bending in flexural members. | Students have understood with
the concept of stresses in axially
and eccentrically loaded vertical
members. | Students will understand the
thin cylindrical and spherical
shell sand torsion in circular
shaft. | | | m 3 | Engineering Geology | Student apply the core concepts of Geology with special focus in various Civil Engineering Projects. | Students can gain the knowledge and application of Tectonic plate theory, seismography & formation of various landforms existing on the Earth?s Surface. | Students identify various minerals and its classification through the mode of formation, texture etc. And understand their applications in Civil Engineering Projects. | Students gain knowledge structural geology in order to understand the occurrence of various deformation on the surface of earth such as faults, folds, joints, etc, and the stratigraphy of India. | with respect to various Geological | Apply their knowledge with respect to various Geological Investigations and its importance to achieve stability and safety in various structures like dams, tunnels and reservoirs. | 2 | | | Fluid Mechanics I | Students understand
Properties of fluid and basic
concepts applicable to fluid
mechanics | Students will solve problems
on Pascal7s law, hydrostatic
law and determination of
Hydrostatic pressure and
Centre of pressure | Studnts apply the concepts of
buoyancy, Metacenter,
metacentric height and liquids
in relative equilibrium. | Students understand the concepts of ideal fluid flow and fluid kinematics. | Students understand the concepts of fluid dynamics such as Bernouli?'s theorem and its applications. | Students understand
visualize the flow through
orifices, mouthpieces,
notches and weirs. | | | | Building Material
Construction | Students understand various types of structure and foundation. | Students study the classification, properties and manufacturing process of basic construction materials. | Students study the
classification, properties and
manufacturing process of basic
construction materials. | Students understand types of formwork, flooring and roofs used in construction. | Students know various materials like glass, timber, metal, alloys & their various types for uses in construction. | Students study various building services, air conditioning and ventilation, acoustics and sound insulation, damp-proofing and water proofing techniques in construction. | | | | Applied Mathematics | Students use matrix algebra
with its specific rules to solve
the system of linear
equations. | Students understand and
apply the concept of
probability distribution and
sampling theory to
engineering problems. | Students apply principles of
vector differential and integral
calculus to the analysis of
angineering problems. | Students identify, formulate and solve engineering problems | | | | | | Concrete Technology | Students study the
ingredients of the concrete &
Properties of cement &
aggregate. | Students study the details of
concrete & concreting
techniques and to
differentiate between
properties of fresh and
hardened concrete. | Students can design concrete mix by I.S. method. | Students study about the HPC, admixtures and their application. | Students study various types of
special concrete, its use and
application. | Students perform various
NDT on concrete structures
and to study crack repair and
rehabilitation of concrete
structures | | | m 4 | Surveying II | Students understand the
principle, uses and
importance of tacheometry. | Students will learn and
analyse various methods
tacheometry and their
application in practical work. | Students understand the
various types of curves and
able to analysis setting out of
horizontal curve. | Students learn analysis of setting
out of vertical curves & works with
suitable methods. | Students learn analysis of setting out of vertical curves & works with suitable methods. | Students will be able to plot contour maps and road section by field measurement. | | | | Building Design And
Drawing- I | Students will get an idea of
load bearing, framed and
Composite structure. | Students understand the
concept of footing, types of
footing, Doors, windows and
stair-case | Students will be able to pian the
building as per the bye laws
and sun path diagram and able
to execute the plan onto the
field. | Students understand various
terminologies of building drawing
and local district rules and can
draw the plan, elevation, section of
the building. | Students will be able to plan the bungalow as per the bye laws and principal of planning. | Students will be able to draw
the line diagram of water
supply, sanitary and electrical
layouts. | | | | Fluid Mechanics- II | Students get familiar with
concepts of major and minor
losses due to various pipe
fittings. | Students get familiar with
concepts of major and minor
losses due to various pipe
fittings. | Students will be able to
evaluate pressure drop in pipe
flow using hagen-poiseuilis?'s
equation for laminar flow in a
pipe. | Students do understand the concept of Prandtl's mixing theory and solve turbulent flow problems. | Students do distinguish the types of compressible flow based on mach number. | Students will be able to
analyze and solve problems
on stagnation properties. | | | | Structural Analysis- I | Students will be able to draw
SFD, AFD and BMD of
determinate frame with
internal hinge. | Students will be able to find
the slope and deflection of
beams using these methods | Students will be able to find the deflection and slope in portal frames using Energy methods. | Students get the concept of
influence line diagram and can
draw influence line for determinate
structures. | Students can analyze the arches,
suspension bridges and three
hinged stiffness girder | Students will be able to find
the stresses in struts,
unsymmetrical section and
can find shear centre for
various sections. | 13 | | | Geotechnical
Engineering- I | Students understand
properties of soil and also
able to understand
interrelationship between soil
properties | Students will be able to
understand and analyse
particle size and plasticity
characteristic and also able to
classify the soil | Students will learn to calculate
phenomenon such as
permeability and seepage | Students will understand principle
stress and shear strength
developed in soil | Students will understand
phenomenon such as
compaction, consolidation of soil | Students will learn to conduct
various methods of
investigation and test on soil | 00/ | | 1 | | | | T | I | | | | | |-------|--|--|---|---
---|---|--|--|---| | Sem 5 | Applied Hydraulics-1 | Students able to understood
the momentum principle,
moment of momentum
equation and applications of
hydraulic machines | Students able to understand
the significance of
dimensionless numbers,
concept of dimensional
homogeneity and different
types of model laws and their
applications | Students able to determine force exerted on stationary flat plates which held normal and vertical to jet and also for curved plate. | Students able to understand about
the general layout, working
procedure of hydro electric plates
and calculations of efficiencies for
different turbines. | Students will be able to
understand the working
procedure of centrifugal pumps,
series parallel operations involved
and reciprocating pumps | Students gets the knowledge
of applications of different
types hydraulics machines
like hydraulic rams, hydraulic
accumulator, press, hydraulic
intensifiers and hydraulic lifts | | | | | Structural Analysis- II | Students identify stable,
unstable, determinate and
indeterminate structures. | Students will be able to
determine the deflection of
determinate structures due to
temperatures effect &
settlement. | Students will analyse the indeterminate structures by force methods. | Students can analyse the
indeterminate structures by
displacement methods. | Students get the idea about plastic analysis and will be able to determine shape factor, plastic moment carrying capacity and collapse load. | | | | | | Transportation
Engineering-1 | Students will be able to
understand the elements of
Air Transportation such as
terminal building, parking
facilities, apron, hangars,
markings and lightings,
airport drainage, ATC etc. | Students able to design the
airport elements such as
runway orientation, length,
gate and taxiway. | Students able to understand elements of water transportation like harbours, ports and breakwater including study of facilities and equipment?s used. | Students will be able to decide the
Cross Section of the Permanent
way and suggest suitable ballast,
steepers, rail and their fixtures and
fasteners. | Students will be able to
understand and design the
geometric elements of Railway
Line such as Gradient, Curves,
Super Elevation, Turnouts etc. | Students will be able to
understand working of yards,
signaling systems,
maintenance of railway track
and its construction and
modernization | | | | | Geotechnical
Engineering - II | Students understand concept of stability of slope and study various method of evaluating stability of slope. | Students will be able to
understand lateral earth
pressure theories and
method to calculate active
and passive earth pressure
also able to check stability of
retaining structure. | Students will be able to calculate bearing capacity to design various footing such as square, rectangle etc. | Students will be able to understand
necessity of pile foundation and
aftic able to design and calculate
load on pile. | Students able to understand
concept of underground conduit
and estimation of strut load in
braced cut. | Students will understand application of reinforced soil. | | | | | Environmental
Engineering- I | Students will understand the
importance of sanitation.
They will also learn to
estimate water demand using
population forecasting
methods. | Students will learn to give
layout of distribution system
which is suitable for particular
location. | Students get idea about whole
water treatment process and
will be able to design
sedimentation tank and rapid
sand filter. | Students get the idea about different coagulants, disinfectant, iron removal, defluoridation, Reverse osmosis and hardness removing methods. | Students get the idea about how to manage the solid waste in the society. | Students will be able to give
plumbing layout and improve
the sanitation by providing
modern plumbing systems
with water efficient fixture. | | | | iem 6 | Applied Hydraulics- II | Students will understand the
boundary layer theory and
boundary layer separation on
the submerged bodies. | Students will understand the impact of engineering solutions for boundary layer theory in the context of submerged bodies. | Students will develop the
understanding of the flow
phenomena and parameters in
channel section. | Students shall design most efficient channel section. | Students will understand the different slope profiles and its effect on the flow characteristics. | Students will apply the
specific energy concepts on
various channel sections. | Students will apply
Kennedy's and
Lacey's theory for
designing irrigation
channels | | | | Design & Drawing Of
Steel Structures | Students get the idea of the properties of steel and working stress method 8 limit state method. | Students will be able to design of simple connections and bracket connections with boiled & welded | Students get the idea about failures of tension member and design of tension member. | Students get the idea about failures
of compression member and
design of compression member as
strut & column. | Students will be able to design column bases. | Students will be able todesign
laterally supported and
unsupported beam. | Students will be able to design a truss. | Students will be able to design a plate girder using IS code. | | | Theory Of Reinforced
And Prestressed
Concrete | Students will understand the
concept of reinforced
concrete & working stress
method (WSM). | Students will analyse & design various types of beams& columns by WSM | Students will design slab,
footing & whear bonds in
structure by WSM | Students will understand basic principles, methods, losses & analysis of prestressed concrete. | StudentsiLearn the general design principles of a prestressed concrete member. | Students will Understand
working of yards, signalling
systems, maintenance of
railway track and its
construction and
modernization. | | | | | Transportation
Engineering- II | Students will be able to
understand to Design
geometric elements of
pavements | Students will be able to
provide suitable design based
on available material and its
characteristics and apply
construction techniques | Students will be abe to
understand the drainage
system and their role in
preventing failure | Students will be able to carryout functional and structural evaluation and thereby applying techniques to strengthen the distressed pavement. | Students will be able to carry out
traffic planning and operation of
traffic elements and their role in
traffic control. | Students will be able to
understand concepts related
to Bridge Engineering, its
types and components. | | | | | Quantity Survey,
Estimation & Valuation | Students can read,
understand and
interpret
plans, sections, detailed
drawings and specifications
for a construction project. To
atusy the various methods of
detailed and approximate
estimates | Students will be able to emphasize the importance of relevant IS: 1200-1964 codes and relevant Indian Standard specifications, taking out quantities from the given requirements of the work, and dratting specifications. | Students can conduct a material and labour survey to understand the current market rates for the various materials required for construction and the different categories of labour required. To prepare specifications of various types, prepare specifications for various times as a part of tender documents. Understanding the importance and use of specification. | Students will be able to perform the rate analysis for various items, standard and non-standard and the use of DSR in this process. | validity as per the Indian Contract | Students can study assessment of the value of a property with or without structure. Study the Valuations table and formulas for assessing different types of properties, | | | | 1 | ENVIRONMENTAL
ENGINEERING II | Students will be able to determine quantity of waste water and also design the sewer line for a population of particular city | Students will analyse waste water sample and suggest a suitable solution to remove the impurities from water. | Students get the idea about working and design of secondary treatment units and sludge disposal standards. | Student get the idea about
advanced water treatment used for
removal of nutrients from waste
water and how to calculate oxygen
deficit. | Students will be able to give
plumbing layout and improve the
sanitation by providing modern
plumbing systems with water
efficient fixtures. | Students shall be able to
carry out analysis of air
quality and understand how it
affects human health. They
will also learn about pollution
controlling measures. | | | | | IRRIGATION
ENGINEERING | Students will be able collect
data and calculate the
demand of water for
agricultural land. | Students will be able to derive
hydrographs and predict yield
of catchment. | Students can apply their
knowledge on ground water,
well hydraulics to estimate safe
yield | Students willbe able to investigate
and control level of sedimentation
in reservoir. | Students will perform stability
analysis and design various
hydraulic structures. | Students can analyse and
carry out design of water
resource distribution system. | | | | Sem 7 | LIMIT STATE
METHOD FOR
REINFORCED
CONCRERE
STRUCTURE | Students will develop the
clear understanding of the
concepts of the design of
reinforced concrete structure
using ULM and LSM. | Students will understand the concept of ULM and apply it in analysis and design of beams. | Students will understand the
various clauses of 15: 456-
2000 and its significance in the
RCC design. | Students will independently or as a member of the team design structural member like beam, column, slab and footing by using LSM. | | | | | | | Traffic Engineering &
Control | Students will understand the
all the traffic characteristics
such as speed, journey time,
hydrodynamic analogies,
quesing theory and entropy in
traffic engineering. | Students will understand all the traffic surveys such as O&D, Parking, Accident etc. required for effective traffic management system and to correlate the concepts related to highway capacity. | Students will understand, plan and design all the important elements on the roads like signal, rotary, traffic management systems and street lighting. | Students will apply statistical analysis in traffic engineering | | 8 | | | | | SOUD WASTE
MANAGEMENT | Students will understand the all the traffic characteristics such as speed, journey time, hydrodynamic analogies, queuing theory and entropy in traffic engineering. | Students will understand all the traffic surveys such as O&D, Parking, Accident etc. required for effective traffic management system and to correlate the concepts related to highway capacity. | Studenta will understand, plan and design all the important elements on the roads like signal, rotary, traffic management systems and street lighting | Students will apply statistical analysis in traffic engineering | | | | | | | Adavace Structural
Analysis | Students will understand the
all the traffic characteristics
such as speed, journey time,
hydrodynamic analogies,
queuing theory and entropy in
traffic engineering. | Students will understand all the traffic surveys such as O&D, Parking, Accident etc. required for effective traffic imanagement system and to correlate the concepts related to highway capacity. | Students will understand, plan
and design all the important
elements on the roads like
signal, rotary, traffic
management systems and
street lighting | Students will apply statistical
analysis in traffic engineering | | | | | | | Design And Drawing
Of Reinforced
Concrete Structures | Students will understand the
complete analysis and design
of residential and industrial
buildings using relevant IS
codes. | Students will understand the
complete analysis and design
of different types of retaining
walfs. | Students will understand the complete analysis and design of different types of water tanks using relevant IS codes by working stress method. | Students be well versed with concepts of civil engineering techniques and ability to use it in practice | | | | | | | Construction
Engineering | Students will understand the different types of standardspecial equipment used in the construction industry and learn the different sources of equipment, economic life and depreciation cost of equipment. | Students will be able to determine owning and operating costs, evaluate maintenance and repair costs. | Students will understand the
various equipment related to
earth moving, drilling and
blasting, pile driving, pumping,
stone crushing, air
compressors, equipment for
moving materials etc. | Students will understand the
complex processes involved in the
construction of tunnels. | Students will understand various soil stabilization techniques such as sand drains and stone columns, use of geotestities and chemicals, diaphragm wall, rock anchors, foundation grouting, etc. | Students will Understand the concept of mass concreting, vacuum concreting and modern slip forms and to understand different types of cladding and their arrangements. | 0 | | | Sem 8 | Construction
Management | Students will be able to understand and apply Management principles, its significance to Construction Management and managing resources. They can also plan, schedule, execute and control projects affectively using resources. | Students will know the unique features, life cycle of project. Understanding the roles and responsibilities of the agencies invoked it gives an idea about organizing and mobilizing resources, design an effective layout etc. | Students will be able to demonstrate capability for preparing project networks and work out best possible project duration. Students shall be able to draw boar charts, for different shall be able to draw boar charts, for different shall be able to draw boar charts, for different shall be proposed to determine the state of the shall be proposed to project completion time using statistical tools. | training, performance evaluation.
Understand basics of Finance
management, sources of funds,
their pros & cons based on project
economic appraisal. Students learn
the method of Resource levelling
and Resource smoothering. | Students will understand various records to be maintained, writing progress reports and updating the network of replain richarials. Students are able to achieve Time Cost optimization using compression, decompression techniques. Linderstanding reasons for Time Over run and Cost overns and corrective measures in such situation. Student understands the importance of Quality, checks to be performed, proper Quality maintains, use statistical quality control. Understanding 15 1400 control. | implement the solely as well as quality aspects during the aspectation of control of the security secur | | BOISAR | | | Transportation
Planning And
Economics | Students will be able to understand and apply Land use transport models for transportation planning. They will also be able to understand travel forecasting principles and techniques in planning. | And they will also be able to | Students will be able to compare characteristics and application of various mass rapid transit system used in urban transportation | | | | | * | | Students will be able to
understand and apply Land
use transport models for
transportation planning. They
will also be able to
understand travel forecasting
principles and techniques in
planning. | |--| |--| # THEEM COLLEGE OF ENGINEERING, BOISAR Approved By AICTE (New Delhi) Government of Maharashtra & DTE Affiliated To University of Mumbai ■ Village Betegaon, Near Union Park, Boisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, ■ Telefax: (02525) 284 927 ● Email ID: info@theemcoe.org ● Website: www.theemcoe.org ■ Website: www.theemcoe.org ■ Telefax: (02525) 284 927 ● Email ID: info@theemcoe.org ■ Telefax: (02525) 284 927 ● Email ID: info@theemcoe.org ■ Telefax: (02525)
284 927 ● Email ID: info@theemcoe.org ■ Telefax: (02525) 284 927 ● Email ID: info@theemcoe.or ### PO's and CO's ### Department of Computer Engineering: - ## PO's A graduate of Civil engineering program will be able to: PO1: Engineering Knowledge: Apply knowledge of mathematics, science and Computer Engineering to solve complex Engineering problems PO2: Problem Analysis: Identify, formulate, research literature and analyze complex engineering problems to arrive at valid conclusions. PO3: Design & Development of Solutions: Design and Develop System architecture, algorithm, hardware component, or Data Flow Diagram to meet desired needs with real time constraints. PO4: Investigation of Complex Problem: Analyze algorithm, interpret data and calculate time and space complexity to arrive at valid PO5: Modern Tools Usage: Apply upgraded tools and techniques in modeling and design of Computer interface. PO6: Engineer and Society: Apply the knowledge to assess societal, health, safety, legal and cultural issue and consequent responsibilities to Computer Engineer. PO7: Environment & Sustainability: Demonstrate knowledge and an understanding of an impact of engineering solution on environment and need for sustainable development PO8: Ethics: Commit to professional ethics, responsibilities and norms of engineering practice. PO9: Individual & Team work: Work effectively as an individual, and as a member or Team leader in different areas. PO10: Communication: Effectively communicate, write report, design documentation and make presentations. PO11: Project management & Finance: Demonstrate knowledge and an understanding of management principles and apply them while managing projects. PO12: Lifelong Learning: Recognize needs for and engage in learning, understanding, and applying new ideas in the context of technological change. ## CO'S | _ | | | | | | | | | |-------|--|---|---|--|--|---|--|---| | | Applied Mathematics | Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic function. | Plot the image of the curve
by a complex transformation
from z-plane to w-plane. | Expand the periodic function
by using Fourier series and
complex form of Fourier
series lema?s | various functions and its | Apply the concept of Z-
transformation and its
inverse of the given
sequence. | Apply the concept of
Correlation and Regression
to the engineering problems. | | | | Object Oriented
Programming
Methodolgy | Understand features and concepts of object oriented programming. | Solve various computational problems using constructs such as if-else. | Understand the concepts of classes and objects in detail. | Understand the importance of interfaces and classes. | Understand the use of multithreading,packages,lists and wrapper classes. | Handle exceptions and program applets. | | | Sem 3 | Data Structures | Study different data structures. | Implement different operations on stack and queue. | Implement different operations on Link list. | Implement different operations on trees. | Handle different traversal techniques using graph. | Select appropriate sorting techniques for a given problem. | Select appropriate
searching
techniques for a
given problem. | | | Digital Logic Design
and Analysis | Understand different number
systems and their
conversions | Analyze and minimize
Boolean expressions. | Design and analyze combinational circuits. | Design and analyze sequential circuits | understand the basic concepts of VHDL | study basics of TTL and
CMOS Logic families. | | | | Discrete Structures | reason logically. | understand use of functions, graphs and trees in programming applications. | understand use of groups
and codes in Encoding-
Decoding | express recursive functions
of other subjects like Data
Structures as recurrence
relation. | | | | | | Electronic Circuits and
Communication
Fundamentals | understand the use of
semiconductor devices in
circuits and modify it as per
requirement | understand the significance
of power amplifiers in day to
day applications along with
the importance of oscillators. | understand the basic concepts of operational amplifier along with its application. | understand the fundamentals of electronic communication and its application. | apply knowledge of
electronic devices and
circuits to communication
applications. | study basic concepts of information theory. | | | | Analysis of Algorithms | calculate time complexity
and space complexity of an
algorithm | analyze different divide and conquer problems | analyze different greedy method problems. | analyze different dynamic programming problems | analyze different backtracking problems | analyze different string matching algorithms. | select appropriate
problem solving
strategies | | | Computer
Organization and
Architecture | understand basic structure of computer. | perform computer arithmetic operations. | Ability to understand control unit operations. | design memory organization
that uses banks for different
word size operations. | understand the concept of cache mapping techniques. | understand the concept of I/O organization. | conceptualize
instruction level
parallelism, | | Sem 4 | Data Base
Management systems | have the ability to reason logically. | understand use of functions, graphs and trees in programming applications. | understand use of groups and codes in Encoding-
Decoding. | express recursive functions of other subjects like Data Structures as recurrence relation. | get the idea of ACID
properties used in
transaction. They will get to
understand the concept of
deadlock handling and how it
should be prevented or
detected. | get the idea of various
techniques used for query
optimization. | all | | | Theoretical Computer
Science | Get a conceptual understanding of the fundamentals of alphabets .grammer languages. | Develop an understanding of different types of turing machines and their applications. | Classify and differentiate
between the power and
limitations of theoretical
models of computations. | Grasp the design of basic
machines, regular
expressions, deterministic
and non deterministic
machines. | Understand the various problems including the haiting problems and undecidability. | Compare different types of languages and machines. | NGING (| | | Computer Graphics | Understood basic concepts | Acquired knowledge about drawing basic shapes such | Got basic knowledge of | Acquired knowledge about
Illumination Models and | Learnt about processing of basic shapes by various | Acquired knowledge about | May 1 | Surface Rendering processing algorithms. | | Microprocessor | Understand Processor
Architecture | Create assembly language
and mixed language
programs for 8086 based
system. | Design system using
memory chips and peripheral
chips for 8086
microprocessor | Illustrate techniques to
improve performance of
microprocessors. | Distinguish between RISC and CISC | | | |-------|--|---|---
---|---|---|---|--| | | Operating Systems | Understand basic
knowledge, functions and
services of Operating system
as system software | Design functions and services and learn various scheduling algorithms. | Identify the role of process
synchronization towards
increasing throughput of the
system | Solve the deadlock
problems, resource
allocation and apply various
techniques. | Analyze study and implementation of memory, I/O and file management. | Recognize the various data
structures used by different
OS like Unix Linux and
Windows 7 | | | Sem 5 | Structured and Object
Oriented Analysis and
Design | understand and apply
Techniques to get the
System Requirements. | understand and present
System Requirement in
standard format | understand and Analyse
Feasibility for System
Requirements | understand and Model
different System
Requirements. | design different Databases
required for various Systems
as per the needs of an
Organisations. | get the idea of various UML
Diagrams. | | | | Computer Networks | develop an understanding of
computer network, protocol,
topology and the concept of
OSI layers. | conceptual understanding of
the guided and unguided
media. | understand Flow control,
error control, framing With
the aloha and CSMA. | understand the concept of
Iv4 and IPv6 addresses,
subletting with the routing
algorithm. | understand the concept of
socket programming with the
congestion control: | understand the concept application layer services and SNMP. | | | | Web Technologies | Understand Processor
Architecture | Create assembly language
and mixed language
programs for 8086 based
system. | Design system using
memory chips and peripheral
chips for 8086
microprocessor | Illustrate techniques to
improve performance of
microprocessors. | Distinguish between RISC and CISC | | | | | System Programming
and Compiler
Construction | Understand system program and application program. | Learn the basics of
assembler, compiler loader
and macroprocessor. | Understand different types of software tools | Study different phases of compiler. | Implement different types of parsers. | Apply different code optimization and generation techniques on given code. | | | | Software Engineering | get a conceptual
understanding of the
Software engineering,
Software processing models
and Metrics | develop an understanding of
different types of Cost
estimation Models and the
software scheduling and
Planning | develop and understanding
of Risk management and
software configuration
management with version
and change control | grasp the design of software
and understand the concept
of software architecture and
user interface design with
Software quality assurance
and quality metrics | understand the concept of
Black box, white box and oo
testing. | understand the concept of
software maintenance and
reverse engineering with web
engineering and TDD
process | | | Sem 6 | Distributed Databases | get the idea of distributed
database systems, issues in
designing, and architectures
of DDB | get the idea about
fragmentation, allocation and
various transparancies in
Distributed Database design | get an idea of transaction
management, concurrency
control and various
algorithms for concurrency
control in distributed
database. | understand Deadlock
detection techniques,
prevention, and avoidance
and recovery protocols in
distributed database
systems. | get acquainted with phases
of distributed query
processing and global query
optimization algorithms. | get an idea of
Heterogeneous database
architecture and various
issues in heterogeneous
databases. | execute Xquery on
XML database file
and get idea about
various
applications of
XML in distributed
database systems. | | | Mobile
Communication and
Computing | Understand GSM and CDMA cellular architecture | Design and configure wireless access points | Use network simulator tool to simulate mobile network. | Implement small android based application. | Understand basics of
wireless local area networks | Solve security issues in mobile computing. | | | | Project Management | Define characteristics of a project | Conceptualize IT project management | Study and describe risk in
environment and the
management challenges for
effective project
management. | Apply the project
management principles
across all phases of a project | Implement different phases of IT projects. | Demonstrate use of tools
and techniques for the
management of a project
plan, monitor and controlling
a project schedule and
budget, tracking project
progress. | | | | Digital Signal
Processing | Understand the concept of
Discrete time Signal and
perform signal manipulation. | Perform classification of DT
System and will be able to
understand concept of IIR
and FIR System. | Evaluate DFT and analyze the properties of DFT. | Calculate DFT using FFT Flowgraph | Understand Fast DFT
Algorithms. | Understand the concept of
DSP Processor and real time
DSP Applications | | | Sem 7 | Cryptography and
System Security | understand a variety of
generic security threats and
vulnerabilities, identify and
analyze particular security
problems for a given
application | understand the principles
and practices of basic and
advanced cryptographic
techniques and its
classifications. | understand the various symmetric key cryptographic techniques, their design and modes of operations along with their applications. | understand the various public key cryptographic techniques, their design and modes of operations along with their applications. | distinguish between their original data and any modified or corrupted data during transmission through a network using Cryptographic hash functions. | understand the various publicly available authentication protocols and their real time applications. | create an awareness among themselves about individual and organizational security while communicating within or outside a network with the help of firewalls, IDS, passwords, etc. | | | Artificial Intelligence | develop a basic
understanding of Al building
blocks presented in
intelligent agents | Understand working of different types of agents and environments. | Solve problems using
different search strategies
and reasoning and apply
different learning algorithms
to solve problems | Infer and explain knowledge
and reasoning in uncertain
domain and different
methods of learning. | Develop a plan for a given
search problem to design
and develop the Al
applications | Evaluate applications of expert system and NLP. | | | | Software Architecture | Understand the architectural concepts ,importance and role of software architecture | Recognize major software architectural styles, design patterns and framework | Analyze Components and
different types of Connectors
, their role in software
erchitecture | Understand the modeling techniques and types of analysis for a problem and selection among them | Implement software architecture using different frameworks | Design software architecture
for non-functional and
domain specific software
systems | | | | Data Warehouse and
Mining | Get an idea of designing
data warehouse for a given
organization | Extract meaningful data from
large database | Understand the concepts of
applying and implementing
algorithms | Identify which algorithm to use for efficient results | Learn various data mining techniques | Implement algorithms for decision making strategies | | | | Human Machine
Interaction | Knowledge of basic building blocks of human machine interaction | design user centric interfaces. | design innovative and user friendly interfaces. | apply HMI in their day-to-day activities. | criticize existing interface designs, and improve them. | Design application for social and technical task. | | | Sem 8 | Parallel and distributed
Systems | Apply the principles and
concept in analyzing and
designing the parallel and
distributed system | Gain knowledge on the challenges and opportunities faced by parallel and distributed systems. | Understand the middleware technologies that support distributed applications such as RPC, RMI and object based middleware. | Improve the performance and reliability of distributed and parallel programs. | Study the concepts of resource and process management. | | | | × | Digital Forensic | understand the basic definitions and focus on the procedures for identification, preservation and extraction of electronic evidences and the evidence gathering methodology | focus on the auditing and investigation of network and host based evidences. | analyze and document the information gathered and prepare a testimonial evidence and also analyze the challenges in evidence handling. | experience a hands-on environment of
forensic tools and resources. | understand the various
system requirements for
system administrators and
forensic analystsand also
understand the process of
forensic duplication. | differentiate between the
various possible attacks on a
host or network based device
and how to investigate such
a live system and the various
laws against cyber-crime. | | # THEEM COLLEGE OF ENGINEERING, BOISAR Approved By AICTE (New Delhi) Government of Maharashtra & DTE Affiliated To University of Mumbai ■ Village Betegaon, Near Union Park, Boisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, ● Telefax: (02525) 284 927 ● Email ID: info@theemcoe.org ● Website: www.theemcoe.org ■ Village Betegaon, Near Union Park, Boisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, ■ Telefax: (02525) 284 927 ● Email ID: info@theemcoe.org ■ Village Betegaon, Near Union Park, Boisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, ■ Telefax: (02525) 2 ### PO's and CO's ### Department of Electrical Engineering: - ## PO's A graduate of Civil engineering program will be able to: - PO-1: Students should be able to apply knowledge of mathematics, science and engineering fundamentals and Engineering in all aspects of Electrical Engineering. - PO-2: Students should be able to identify, formulate and analyse complex Electrical Engineering problems reaching substantiated conclusions using basic knowledge of mathematics, science and engineering. - PO-3: Students should be able to design solutions for complex engineering problems and design system components to meet specific needs while considering public health, society, environment and safety. - PO4: students should be able to design and conduct experiment, as well as to analyse and interpret data. - PO-5: Students should be able to apply the techniques of using appropriate tools to investigate, analyse, design, simulate and /or fabricate/commission complete system involving generation, transmission and distribution of Electrical energy. - PO-6: Students should be able to apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering practice. - PO-7: Students should be able to understand the impact of professional engineering solutions on society and environment and demonstrate knowledge of and need for sustainable development. - PO-8: Students should be able to apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. - PO-9: Students should be able to work effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings. - **PO-10:** Students should be able to communicate effectively on complex engineering activities with the engineering community and with society at large. - PO-11: Students should be able to be familiar with project management problems and basic financial principles for multi-disciplinary work. - PO-12: Students should be able to recognize the need for identifying contemporary issues to changing technical scenario and an ability to engage in life-long learning to update himself/herself. # CO'S | | Applied Mathematics- | To demonstrate basic knowledge of Laplace Transform. | To evaluate problems of Fourier series, Bessel Functions. | To solve Vector Algebra in electrical engineering. | To use Complex Variable in their engineering problems. | | | |-------|---|---|---|--|---|---|---| | | Electronic Devices and
Circuits | To identify the different types of diodes and their applications in electronic circuits | To analyze the dc and ac
parameters of BJT JFET,
and differential amplifiers | To demonstrate and analyze
the effects of various
parameters on performance
of BJT and JFET amplifier. | To analyze the effects of negative feedback in BJT and JFET amplifiers. | To identify the effects of
cascading in BJT and JFET
amplifiers. | To analyze the different types of oscillators. | | Sem 3 | Conventional & Non-
conventional Power
Generation | Familiar with the reserved energy resources and basics of power generation calculations. | Familiar with techniques of power generation, operation and maintenance of thermal power plant. | Familiar with power
generation using Hydro
power plant, nuclear power
plant, Diesel power plant and
gas turbine power plant. | Familiar with power generation using
non conventional sources of energy
and their advantages over conventional
power generation. | | | | | Electrical &
Electronics
Measurement | To illustrate the working
principle of measurement
instruments. | To analyse the working of
various analog and digital
instruments in electrical
measurements. | To analyse the concept of
extension of range of meters
used in electrical
measurements. | To analyse the performance of bridges used in electrical measurement process. | To illustrate the need for
calibration process in
instruments. | To analyse the performance of transducers involved in electrical measurement. | | | Electrical Machine-I | Familiar with the basic
knowledge of Electro-
Magnetism & Electro-
Mechanical energy
conversion. | Familiar with the working
principle, performance,
control and applications of
Electrical DC Generator. | Familiar with the working
principle, performance,
control, testing and
applications of Electrical DC
Motor. | Familiar with the working principle, performance, control and applications of Stepper motor. | | | | | Object Oriented
Programming and
Methodology Lab | To apply fundamental programming constructs. | To illustrate the concept of packages, classes and objects. | To elaborate the concept of strings, arrays and vectors. | To implement the concept of inheritance and interfaces. | To implement the notion of exception handling and multithreading. | To develop GUI based application. | | | Applied Mathematics | To develop the proactive approach towards the selection of methods of solution of engineering problems in calculus. | To compute Eigen values and Eigen vectors. | To identify different probability distribution, learn sampling technique. | To evaluate complex integrals and use their applications in electrical engineering problems. | 89 | 7 | | | Power System-I | To illustrate the general structure of power system. | To illustrate purpose of
different mechanical
components of overhead
transmission lines. | To determine transmission
line parameters for different
configurations. | To analyze the performance of short, medium and Long transmission line | To analyze the performance of transmission line for different loading condition .a. | To illustrate safety norms and regulations related to underground cables and grounding techniques | | | Electrical Machine-II | To illustrate the working
principle of single phase and
three phase transformer | To illustrate the working
principle of auto-transformer | To analyse various type of connections of three phase transformer. | To analyse performance of transformer
under various operating conditions | To illustrate various design aspects of transformer, | To analyse the characteristics of CT and VT | | | ** | | | | | | | | |-------|---|---|--|--|---|---|---|-----| | Sem 4 | Electromagnetic Field and wave Theory | To apply knowledge of
mathematics and physics in
electrical engineering field. | To analyze electrostatic and static magnetic fields. | To analyze the effect of
material medium on electric
and magnetic fields. | To analyze and formulate time varying electric and magnetic fields. | To analyze wave generation
and its propagation in
different media. | To analyze static magnetic
field and electrostatic field
distribution using software
tool. | | | | Analog and Digital
Integrated Circuits | To illustrate various performance parameters and characteristics of operational
amplifier. | To illustrate various linear and non-linear application of operational amplifiers. | To design and analyse linear
voltage regulators and
multivibrators. | To do various conversion of number systems and illustrate logic families. | To build, design and analyse combinational circuits. | To build, design and analyse sequential circuits. | | | | Electrical Network | To analyze electrical network
using different Network
theorems. | To analyze electrical network
using Graph theory. | To analyze the effect of
switching conditions on
Electrical networks using
Differential equations, | To analyze the effect of switching conditions on Electrical networks using Laplace Transform. | To develop transfer function model of system using two port network parameters. | To analyze time domain behavior from pole zero plot | | | | Power System - II | To understand different kind of faults on transmission line. | To analyse symmetrical fault | To analyse symmetrical
components and
unsymmetrical faults. | To illustrate and analyse power system transients | To understand insulation co-
ordination in power system. | To understand and analyse corona on transmission line. | | | | Electrical Machines -
III | To illustrate the working
principle of three phase
induction motor | To analyse and evaluate
performance of three phase
induction motors under
various operating conditions | To illustrate various speed control and starting methods of three phase induction motor. | To illustrate the working principle of single phase induction motor | To analyse the performance
of single phase induction
motor. | To design three phase induction motor | | | | Control System - I | To model electrical and
electromechanical system
using transfer function. | To Illustrate methodology for simplification of system | To model and analyse given system in state space | To analyse steady state condition of given system | To analyse the transient and
stability conditions of
physical system | | | | em 5 | Power Electronics | Select and design power
electronic converter
topologies for a broad range
of energy conversion
applications. | Analyse and simulate the
performance of power
electronic conversion
systems. | Analyse various single phase
and three phase power
converter circuits and
understand their applications. | Apply the basic concepts of power electronics to design the circuits in the fields of AC and DC drives, power generation and transmission and energy conversion, industrial applications. | identify and describe various
auxiliary circuits and
requirements in power
electronics applications such
as Gate driver circuit, and
snubber circuits along with
electrical isolation and heat
sinks | | | | | Utilization of Electrical
Energy | To understand and analyse the power factor for improving the quality of supply. | To analyse different type of traction systems. | To understand modern tools to control electric traction motors. | To understand concept of electrical
heating and welding and their
application. | To understand different methods of cooling systems used in domestic electric appliances. | | | | - 1 | Business
Communication and
Ethics | Design a technical document
using precise language,
suitable vocabulary and apt
style. | Develop the life skills/
interpersonal skills to
progress professionally by
building stronger
relationships. | Demonstrate awareness of
contemporary issues
knowledge of professional
and ethical responsibilities. | Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP. | Deliver formal presentations
effectively implementing the
verbal and non-verbal skills. | | | | | Protection and
Switchgear
Engineering | To select the appropriate switching/protecting device for substations. | To discriminate between the application of circuit breaker and fuses as a protective device. | To understand the basic concept of relay, types of relay and their applications in power system. | To select the specific protection
required for different components of
power system according to the type of
fault. | To apply the specific
protection provided for
different types of
transmission lines. | | | | | Electrical Machines - IV. | To determine the performance parameters of synchronous machines graphically and analytically by conducting different test. | To analyse the performance parameters of synchronous machines. | To understand the concept of direct and quadrature axis parameters of synchronous machines. | To understand and analyse the operation of synchronous motor. | To analyse abc to dq0 transformation and steady state operation of synchronous machine. | To understand the operation
and analyse control of BLDC
motors. | | | | Signal processing | To discriminate continuous
and discrete time signals and
systems. | To understand the
transformation of discrete
time signal to Z domain. | To analyse frequency
response of systems using Z
domain. | To understand discrete and fast Fourier transform. | To design FIR system. | To design IIR System. | | | em 6 | Microcontroller and its
Applications | To understand the features and architecture of PIC 18 microcontroller. | To understand the
instructional set and apply to
basic arithmetic and logical
operations. | To understand the supportive devices of PIC 18 microcontrollers. | To understand the interfacing of PiC 18 microcontroller and it?s peripheral. | To understand the coding of PIC 18 microcontroller using C language. | To design general purpose applications of PIC 18 microcontroller. | | | | Control System - II | To understand the basic design of various compensators. | To design compensators using root locus techniques. | To design compensators
using frequency response
techniques. | To design compensators using state variable approach. | To illustrate basics of digital control system. | To design digital compensators. | | | | Micro-grid | To identify and describe the evolvement Microgrid, its features and barriers. | To select, size and design the various microgrid resources. | To model, analyze and | To identify and describe the role communication in Microgrid realization. | To identify and describe
various operational
strategies and protection
schemes suitable for
Microgrid. | To apprise the different standards applicable for microgrid deployment | | | | Power System
Operation & Control | To develop ability to analyze and use various methods to improve stability of power systems. | To understand the need for generation and control of reactive power. | To impart knowledge about various advanced controllers such as FACTs controllers with its evolution, principle of operation, circuit diagram and applications. | To illustrate the automatic frequency and voltage control strategies for single and two area case and analyze the effects, knowing the necessity of generation control | To understand formulation of
unit commitment and
economic load dispatch
tasks and solve it using
optimization techniques. | | | | | High Voltage DC
Transmission | Understand HVDC
transmission system with
various links & working of its
entire component. | Understand & analyze working of converters with and without overlap. | Know the various control schemes involved in HVDCT system. | Identify various types of faults in HVDCT & use the corresponding protection schemes. | Improve the quality of power transmitted using various filters. | | | | | Electrical Machine
Design | Students will be able to know
the basic knowledge of
Magnetic, Electrical,
Conducting and Insulating
materials used in electrical
machines | Students will be able to relate the physical dimensions of different parts of the transformer to the rating | Students will be able to exposed to the optimization in induction motor design. | Able to know the preformence measurement of three phase induction motor and three phase transformer. | Able to analyse and solve
designing numericals based
on three phase transformer | | | | | Control System-II | Students will have
knowledge of different
compensating methods and
the automation of basic
systems using PLC | | | | | | | | 1 | Renewable Energy &
Energy Storage
System | Understand current scenario of depleting world?'s ordoleting world?'s fossif tuels, bad impact of fossif fuel power plants on environment and the means of miligating these issues with different renewable energy alternatives based distributed generation. | Understand the process of power generation through solar thermal & solar photovoltaics. | Understand the process of power generation through Wind Energy system (WES), Fuel cell technology, biomass, tidal, Ocean Thermal Electric Conversion, geothermal, and Microhydro, etc. | Understand and describe the
importance of various forms of energy
storage, importance of storage system
in new power generation scenario, their
characteristics and performance with
various applications. | | | | | | Design Management
& Auditing of Electrical
System | Familiar with the basics of
Electrical power system. | Familiar with the knowledge of designing of electrical distribution network. | Familiar with the Energy
Monitoring, Targeting &
Management of Electrical
system. | Familiar with the electrical energy audit & energy efficient system design. | | | 1 | | | Drives & Control | Gain an ability to design and
conduct performance
experiments, as well as to
identify, formulate and solve
drives related problems. | | V) | | | | THI | | Sem 8 | Power System Planning & Reliability | Should be able to make a
Generation System Model
for the Power system
in
terms of frequency and | Should be able to calculate reliability indices of the power system based on | Should be able to get load flow analysis. | Should be able to get optimized system | To study Bidding and
Tendering process studied | Should be able to plan a small Generation and Transmission System, predict its behavior, do the | Ini | ENCI | Flexible AC
Transmission System | ACTS & necessity of load ompensation taking into count the general system | working of FACTS controller
used for shunt | used for series | phase angle regulation with the help of | Understand & analyze the working of combined shunt & series controller. | | |------------------------------------|---|---|-----------------|---|---|--| |------------------------------------|---|---|-----------------|---|---|--| ## THEEM COLLEGE OF ENGINEERING, BOISAR Approved By AICTE (New Delhi) Government of Maharashtra & DTE Affiliated To University of Mumbai ■ Village Betegaon, Near Union Park, Roisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, ■ Telefax: (02525) 284 927 ■ Email ID: info@theemcoe.org ■ Website: www.theemcoe.org ■ Website: www.theemcoe.org ■ Telefax: (02525) 284 927 ■ Email ID: info@theemcoe.org ■ Website: www.theemcoe.org ■ Website: www.theemcoe.org ■ Telefax: (02525) 284 927 ■ Email ID: info@theemcoe.org ■ Website: www.theemcoe.org ■ Telefax: (02525) 284 927 ■ Email ID: info@theemcoe.org ■ Telefax: (02525) 284 927 ## PO's and CO's ## Department of Electronics & Telecommunication Engineering: - ## PO's A graduate of electronics and telecommunication engineering program will be able to: PO1: Engineering Knowledge: Acquire and apply knowledge of Mathematics, Science and Electronics and Telecommunication Engineering fundamentals to solve complex engineering problems PO2: Problem Analysis: Identify, formulate and analyze complex Electronics and Telecommunication Engineering problems to derive conclusions PO3: Design & Development of Solutions: Design algorithm, system, and circuit to develop solutions for complex Electronics and Telecommunication systems to meet desired needs. PO4: Conduct investigation of Complex Problem: Design and conduct experiments, analyze and interpret data for analog, digital Electronics and Telecommunication systems. PO5: Modern Tools Usage: Identify and apply appropriate techniques and modern engineering tools in the modeling and design of Electronics and Telecommunication Engineering practice. PO6: Engineer and Society: Apply appropriate knowledge to assess societal, health, safety, legal and cultural issue and consequent responsibilities to the professional engineering practice. PO7: Environment & Sustainability: Understand the impact of Electronics and Telecommunication Engineering solutions on society and environment for sustainable development. PO8: Ethics: Apply knowledge of Electronics and Telecommunication Engineering in profession with ethical responsibilities. PO9: Individual & Team work: Function effectively both as an individual and as a member or a leader in a multidisciplinary team. PO10: Communication: Effectively communicate, write report, design documentation and make presentations for engineering community and society. PO11: Project management & Finance: Demonstrate knowledge and an understanding of management principles and apply them while managing projects. PO12: Lifelong Learning: Recognize the need and engage independently for lifelong learning in the context of technological changes. # CO'S | | # 100 PO 10 # 10 A | To understand the basic | and out to a coperation of | and the same of th | To understand basic knowledge | | | |------|--|---|---|--|---|--
--| | | Applied Mathematics-
III | concept of Laplace
Transformation | To solve Fourier
Transformation | To solve Vector
differentiation and integration | knowledge of Complex Variable and
Bessel's Function | | | | | Electronic Devices and
Circuits I | Understand the basic
components like resistor,
capacitor,inductor and
analyze the characteristics of
PN junction Diodes | Do analysis design of
rectifiers with filters and
design of zener voltage
regulator | Understand operation of BJT
and design and analyse
different configuration of the
BJT amplifier | Understand operation of JFET and design and analyse the FET amplifier | | | | em 3 | Digital System Design | inter conversions, Also | Understood Boolean algebra
for minimization and
implementation of logic
functions and various
Combinational circuits | Analyze design and
implement sequential logic
circuits | Analyze digital systems using PLD and
Simulate and Implement
Combinational and sequential circuits
using VHDL systems. | | | | T. | Networks | Apply their knowledge in
analysing Circuits by using
network theorems. | Apply the time and frequency method of analysis. | Find the various parameters of two port network. | Apply network topology for analyzing the circuit | Synthesize the network using passive elements. | | | | Instrumentation and | Understand the various types
of sensors and transducers
as well. | Students will get the idea
about data acquisiton
system. And will be able to
find the transfer function of a
system. | Find time domain and
frequency domain analysis of
system and the stability using
root locus technique as well. | to find stability using bode plot method
and will understand Different stability
analysis methods. | | | | | | Code a program using java
constructs. | Understand fundamental
features of an object
oriented language: object
classes and interfaces,
exceptions and libraries of
object collections. | Develop a program that
efficiently implements the
algorithm for given tasks. | Utilize the knowledge acquired in this course to develop higher level algorithms. | | STATE OF THE PARTY | | | | Lagrange's equation and
higher order derivatives | To understand importance of
vector spees in electronics
and telecommunication
engineering | Apply method of calculus of
variations to specific
systems, demonstrate ability
to manipulate matrices and
compute eigenvalues and
eigenvectors | To understand the relevance of complex variables in various facets of engineering | | NI OF CHILD | | | Analog Electronics II | Know about the various frequency responses of BJT and MOSFET amplifiers. They also got the idea of the effects of various capacitors along with the merger of various configurations. | Understand about the basic difference between the implementation of BJT and MOSFET based differential amplifiers. They also got the idea of the CMRR along with the small signal analysis. | Perform analysis of BJT,
MOSFET current sources.
They will also be able to
overcome the drawbacks of
Two transistor current
sources by using the special
ones. | Distinguish between the various types
of power amplifiers which would help
them design the required ones
according to the given specifications. | Get the idea of the effect of
HF and its impact on op-amp
gain. They will also be able
to use them in many
practical applications where
the demand of voltage gain
would be very high. | Get the idea of voltage regulators in different configurations. | |-------|---|---|--|--|--|--|---| | iem 4 | Microprocessors and
Peripherals | Students will get the idea of
Architecture of 8085 and
8086 Microprocessor | Understand Instruction set
and programming of 8086
and students will be able to
do interfacing with 8086 and
applications. | Students will get the
knowledge of ADC, DAC
interfacing with 8086 and its
application | Perform 8086 Microprocessor interfacing, also get the basic idea of advanced microprocessors. | | | | | Wave Theory and Propagation | Students will get the understanding of basic laws of electrostatics and magnetostatics in vector form. | Get the understanding of the propagation of wave in different media like dielectric and conducting media by solving wave equation and find parameters of media | Calculate energy transported
by means of electromagnetic
waves from one point to
another and to study
polarization of waves. | Solve electromagnetic problems using different numerical methods. | Understand with the propagation of the waves by different types such as ground waves and space waves. | Get acquainted with the factors affecting the wave during its propagation and understand sky wave propagation; related parameters such as MUF, skip distance and critical frequency | | | Signals and Systems | Understand types of signals in the time and frequency domains and its significance. | Understand system,
classification of system and
analysis of system using
Laplace transform. | To find the z transform of signals and Fourier series of continuous and discrete time signals as well. | Students will get the idea about continuous time Fourier transform and discrete time Fourier transform which is useful in understanding behavior of Electronics circuits and communication system. | | | | | Control Systems | Understand the fundamental concepts of control system, types of models, signals and their response. | Find the mathematical
modeling of system,
Controllability and
Observability of the system | Understand the stability analysis in time and frequency domain. | Get the idea about optimal and adaptive control system | | | | | Microcontrollers and Applications | Get the idea of difference
between microprocessor and
microcontroller, purpose
advantages of
microcontroller 8051. | To understand different operations, instructions, assembly programming and applications of 8051 microcontroller hardware and software. | Understand architecture of
ARM7, data types, different
codes, movement
operations, loops, assembly
programming for ARM7 as
well. | Get the idea about embedded system, its applications digital camera, stepper motor controller. | | | | | Analog
Communication | Students will the idea about basics of communication system and understand the need of modulation and demodulation. | Recieve knowledge of
amplitude modulation of
demodulation and angle
modulation and
demodulation as well. | To understand different
types of radio receiver and
the sampling techniques for
different types of
signals. | To understand the concept of different pulse modulation techniques, TDM and FDM | | | | Sem 5 | Random Signal
Analysis | Apply theory of probability in identifying and solving relevant problems | Define and differentiate
between random variables
through the use of
Cumulative distribution
function CDF and probability
distribution function PDF as
well as marginal and
conditional CDF, PDF. | Get the basic idea of functions random process and will be able to determine the response of a linear time invariant sytem to a random process. | Got the basic idea of sequence of random variables, convergence, markov chain and queuing theory | | | | | RF Modeling and
Antennas | Design lumped and distributed element filters | Identify basic antenna
parameters required for the
analysis of simple wire
antennas | Describe various antenna
structures and differentiate
them on the basis of their
application and
performance. | Analyze and design antenna arrays
and study wireless transmit-receive
systems | | | | | Integrated Circuits | Understand the fundamentals and areas of applications for the Integrated Circuits using OPAMP. | Design filters, oscillators and
non linear application like
generators, rectifiers and
comparators | Design Special Purpose
Integrated Circuits like 555
timer with real time
applications | Understand the differences
amongdifferent voltage regulators and
their uses and analyze Counters, Shift
Registers and ALU | | | | | Digital Communication | Understand the basics of
information theory and
coding techniques | Determine methods to
mitigate inter symbol
interference in baseband
transmission system | Describe and determine the performance of different error control coding schemes for the reliable transmission of digital representation of signals and information over the channel | Understand various spreading techniques and determine bit error performance of various digital communication systems | | | | | Discrete Time Signal
Processing | To understand Transform
Analysis of Linear Time
Invariant System | To design filters and their
implementation using various
techniques | signal processing | To understand various techniques for
approximations in digital signal
processing parlance and applications
of the same | | | | | Computer
Communication and
Telecom Networks | To understand various
principles of network
applications | To understand the transport
layer protocols and their
reliability | To understand various
network layer services and
protocols | To understand various data link layer
services, protocols and physical layer
services | | | | iem 6 | Television Engineering | Get the understanding of the basics of Analog TV systems | | Become well conversant with
new development in video
engineering. | Understand, use and working principles of latest display like HDTV, LCD, LED, Plasma and large plat panel monitors. | | | | | Operating Systems | Understand the role of an operating system and Compare between different algorithms used for management and scheduling of processes, Memory and input-output operation. | To understand File
Management and Input
Output Management | To understand Unix and Linux Operating System | To understand Real time operating systems | | | | | VLSI Design | Get basic idea of scaling and
its effect, fabrication steps
and Lambda rules | Get the idea about the
different design styles and
the difference between them | Design different types of
inverters with static and
dynamic analysis | Get the idea about the static and
dynamic RAM, different flash
memories, read and write process in
the memory | | | | | Image and Video
Processing | Understand basics of Image
aand video processing and
use various transforms to
interpret and analyze 2D
signals | Perform time and frequency
domain image enhancement
and image restoration | Understand methods for
image segmentation and
various morphological tools
used for practical
applications. | understand basics of video processing and various methods of motion estimation | | W. | | | Mobile
Communication | To get the idea of different
multiple access techniques,
basics of cellular system and
processes in cellular
systems. | To understand the idea of
different 2G technologies i.e.
GSM, IS-95 CDMA,
architecture and channels in
CDMA | Get the idea of evolution of
GSM to 3G technology,
Architecture of IMT 2000 | To understand the difference in 3G/4G technology, mobile adhoc network, mobility management, wireless sensor network and RFID technology | | | | Sem 7 | Optical
Communication and
Networks | Get the idea about properties of light, types of fiber | Get the idea about the structure of light sources, detectors & multiplexers. | Get the knowledge of various
components used in optical
network system & losses in
optical fiber. | Know the designing & operating
principals of modern communication
system. | | | | | Microwave and Radar
Engineering | Get the idea about
Microwave frequecy, their
bands and application. | Get the idea about the
different types of waveguides
and the microwave
components with the help of
Scattering parameters | Design different matching
methods using Z & ZY Smith
chart. The differents
matching are Lumped
matching, Single stub
matching and Double stub
matching. | Get the idea about the principle of
RADAR, its range equation, Doppler
effect and various types of RADAR and
different application | | SAR MAS | | | Data Compression &
Encryption | To compress any given text
sequence using various
techniques | To understand various
image, audio and video
compression standards. | To understand various
security goals and encryption
standards | To understand symmetric and
asymmetric key cryptography
techniques and their implications in
network security | | 15 NS 10 | | | Wireless Networks | Describe the phases of
planning and design of
mobile wireless networks | Compare personal area
network (PAN) technologies
such as Zigbee, Bluetooth
etc | To understand details of
sensor network architecture,
traffic related protocols,
transmission technology etc | To Understand middleware protocol
and network management issues of
sensor networks | | - | | sem 8 | Satellite communication and Networks Internet and Voice Communication | To understand TCP/IP networking model and configuration of Application Layer Demonstrate broad knowledge of fundamental interest and technical | To understand Transport layer and and its underlining functions in TCP Protocol To understand Internet | Analyze link budget to satellite link. To understand the Internet Protocol and its various standards and services To understand various and services | To understand various network and | | |-------|---|--|---|--|-----------------------------------|--| | | Telecom Network
Management | principles and technical
standards underlying | Protocol | | | | # THEEM COLLEGE OF ENGINEERING, BOISAR Approved By AICTE (New Delhi) Government of Maharashtra & DTE Affiliated To University of Mumbai ■ Village Betegaon, Near Union Park, Boisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, • Telefax: (02525) 284 927 • Email ID: info@theemcoe.org • Website: www.theemcoe.org • Website: www.theemcoe.org • Telefax: (02525) 284 927 • Email ID: info@theemcoe.or ### PO's and CO's ### Department of Information Technology Engineering: - #### PO's A graduate of electronics and telecommunication engineering program will be able to: - PO 1: Apply the
knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. (Engineering knowledge) - PO 2: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences (Problem analysis) - PO 3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. (Design/development of solutions) - PO 4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. (Conduct investigations of complex problems) - PO 5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. (Modern tool usage) - PO 6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice. (The engineer and society) - PO 7: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. (Environment and sustainability) - PO 8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. (Ethics) - PO 9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and team work) - PO 10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. (Communication) - PO 11: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. (Project management and finance) CO'S PO 12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.(Life-long learning) | | Applied Mathematics III | Students will able to apply
the Set theory and
Relation concepts. | Students will able to apply
the Functions and define
the recursive functions. | Students will able to apply
Laplace transform to
different applications. | Students will able to apply
Inverse Laplace transform
to different applications. | Students will able to
Identify the permutations
and combinations. | Students will able to
define variable and also
identify the mapping. | | | |-------|--------------------------------|--|---|---|--|--|--|-----|---------| | | Logic Dealgn | Students will able to
understand the concepts
of various components to
design stable analog | Students will able to
represent numbers and
perform arithmetic
operations. | students will able to
minimize the Boolean
expression using Boolean
algebra and design it | Students will able to
analyze and design
combinational circuit. | Students will able to
design and develop
sequential circuits | Students will able to
translate real world
problems into digital logic
formulations using VHDL. | | | | | Data Structures &
Analysis | Students will be able to
select appropriate data
structures as applied to
specified problem
definition. | Students will be able to
implement operations like
searching, insertion, and
deletion, traversing
mechanism etc. on
various data structures. | Students will be able to
students will be able to
implement Linear and Non
Linear data structures. | Students will be able to
implement appropriate
sorting/searching
technique for given
problem. | Students will be able to design advance data structure using Non-Linear data structure. | Students will be able to determine and analyze the complexity of given Algorithms. | | | | Sem 3 | Database
Management System | Student should be able to explain the features of detabase management systems and Relational database | Student should be able to design conceptual models of a database using ER modeling for real life applications and also construct queries in Relational Algebra | Student should be able to create and populate a RDBMS for a real life application, with constraints and keys, using SQL. | Student should be able to retrieve any type of information from a data base by formulating complex queries in SQL | Student should be able to analyze the existing design of a database schema and apply concepts of normalization to design an optimal database. | Student should be able to
build indexing
mechanisms for efficient
retrieval of information
from a database | | | | | Principle of
Communications | Students will be able to differentiate analog and digital communication systems | Students will be able to identify different types of noise occurred, its minimization and able to apply Fourier analysis in frequency & time domain to quantify bandwidth requirement of variety of analog and digital communication systems. | Students will be able to design generation & detection AM, DSB, SSB, FM transmitter and receiver. | Students will be able to apply sampling theorem to quantify the fundamental relationship between channel bandwidth, digital symbol rate and bit rate | Students will be able to explain different types of line coding techniques for generation and detection of signals. | Students will be able to describe Electromagnetic Radiation and propagation of waves. | | | | | Applied Mathematics-IV | Students will able to apply
the Number Theory to
different applications
using theorem. | Students will able to apply probability and understand PDF. | | Students will able to apply
the graphs and trees
concepts to different
applications. | Students will able to understand group?s theory | Students will able to
understand the Lattice
theory | | | | | Computer Networks | Students will be able to describe the functions of each layer in OSI and TCP/IP model. | Students will be able to explain the functions of
Application layer and
Presentation layer
paradigms and Protocols. | Students will able to
describe the Session layer
design issues and
Transport layer services. | Students will able to classify the routing protocols and analyze how to assign the IP addresses for the given network. | Students will able to describe the functions of data link layer and explain the protocols. | Students will able to explain the types of transmission media with real time applications. | | | | Sem 4 | Operating Systems | Student should be able to describe the important computer system resources and the role of operating system in their management policies and algorithms. | Student should be able to
understand the process
management policies and
scheduling of processes
by CPU | Students will be able to
evaluate the requirement
for process
synchronization and
coordination handled by
operating system | Student should be able to describe and analyze the memory management and its allocation policies. | Student should be able to identify use and evaluate the storage management policies with respect to different storage management technologies. | Student should be able to identify the need to create the special purpose operating system. | | ENGINES | | | | Students will be able to describe basic | Students will be able to implement assembly | Students will be able to demonstrate control unit | Students will be able to demonstrate and perform | Students will be able to
categorize memory | Students will be able to | (6) | 0-12 | wn Autom HEEVA | | | _2 | | | | | | | | | |-------|--|--|---|--
---|---|--|--|---|---| | | Computer Graphics and Virtual Reality | understood basic
concepts of computer
graphics | Students shall have understood algorithms to scan convert the basic geometrical printives, transformations, Area filling, clipping. | Students shall have understood the fundamentals of animation, Virtual reality, the related technologies, and shall be able to describe applications of Virtual Reality. | | | 4 | | | | | | Operating Systems | system resources and their management | Student will understand what makes a computer system function and the primary PC components. | Student will understand
the working of an OS as a
manager of various
resources. | Student will implement
some of the functions of
OS such as scheduling
policies, page
replacement algorithms,
IPC. | | | | | | | | Microcontroller and
Embedded Systems | Ability to understand basic
structure embedded
systems | Ability to understand basic structure microcontroller | Ability to understand basic
concepts used in
embedded system. | Ability to program microcontroller. | Ability to design
conceptual embedded
system. |): | | | | | Sem 5 | Advanced Database
Management Systems | Construct complex
queries using SQL to
retrieve and manipulate
information in a database. | Design and implement full-
fledged rest life
applications integrated
with database systems. | Clearly understand how
databases are actually
stored and accessed.
How transaction ACID
properties are maintained
and how a database
recovers from failures. | Apply security controls to avoid any type of security incidents on vital database systems. | Design advanced data
systems using Object
based systems or
Distributing databases for
better resource
management. | Understand the
importance of enterprise
data and be able to
organize data to perform
analysis on the data and
take strategic decisions. | | | | | | Open Source
Technologies | After this course students will be able to apply knowledge of the linux shell commands for working on the linux environment. | After this course students
will be able to apply
knowledge of the linux
administration commands
for performing network
and system security
administration. | After this course students will be able to apply knowledge of servers to configure various servers like FTP, Web server, DNS, etc. | After this course students will be able to create simple apps for the Android OS. | | | | | | | | Business
Communication and
Ethics | A learner will be able to
communicate effectively
in both verbal and written
form and demonstrate
knowledge of professional
and ethical responsibilities | A learner will be able to
participate and succeed in
Campus placements and
competitive examinations
like GATE, CET. | A learner will be able to
possess entrepreneurial
approach and ability for
life-long learning. | A learner will be able to have education necessary for understanding the impact of engineering solutions on Society and demonstrate awareness of contemporary issues. | | | | | | | | Software Engineering | Meet the information
Technology Program
Objectives of identifying
and solving engineering
problems | To understand principles, concepts, methods, and techniques of the software engineering approach to producing quality software for large, complex systems. | To function effectively as
a member of a team
engaged in technical
work. | To think critically about ethical and social issues in software engineering for different applications. | | | | | - | | | Distributed Systems | The student gains clear understanding of fundamental principles of Distributed Systems along with design and implementation of key mechanisms, Clock Synchronization, Election Algorithms, Mutual Exclusion, Message Communication, Process and Resource Scheduling etc. | communication, remote procedure call and
Remote method
invocation (RPC and
RMI) along with group
communication. | Emphasis is on
developing applications
using current distributed
computing technologies
like EJB, CORBA and
.NET. | Student should be able to develop/design distributed system/applications for an enterprise using SOA | | | | | | | Sem (| System And Web
Security | Upon successful completion of the course the student will be able to differentiate between authentication and authorization | Upon successful completion of the course the student will be able to explain the basic idea behind access control an compare the various access control policies and models. | evolain the need for | behind frewalls and
intrusion detection | Upon successful completion of the course the student will be able to explain malicious software and typical software solutions used in dealing with viruses and worms | Upon successful completion of the course the student will be able to understand and explain various issues related to program security and web security. | | | | | | Cata Mining and
Business Intelligence | On successful completion of this course students should be able demonstrate an understanding of the importance of dala mining and the principles of business intelligence | On successful completion of this course students should be able able to prepare the data needed for deta mining algorithm in terms of attributes and class inputs, training, validating, and testing files. | of this course students
should be able implement | of this course students
should be able define and
apply metrics to measure | Analyze the problem | | | | | | | Advanced internet
Technology | On successful completion of this course students should be able develop Keyword Generation. Using Google Analytics etc. | On successful completion of this course students should be able to demonstrate Responsive Web Design | should be able to | | | ¥ | | | | | | Software Project
Management | Upon completion of the course, students should be able to articulate similarities and differences between IT projects and other types of projects. | Upon completion of the course, students should be able to justify an IT project by establishing a business case | Upon completion of the course, students should be able to develop a project charter | Upon completion of the course, students should be able to develop a work breakdown structure for an IT project Estimate resources (time, cost, human being, etc.) | Upon completion of the course, students should be able to establish task inter-dependencies | Upon completion of the course, students should be able to construct and analyze a network diagram | Upon completion of the
ocurse, students should
be able to identify IT
project risks and develop
risk mitigation strategies | Upon completion of the course, students should be able to ensure the quality of the project using various standards | Upon completion of the course, students should be able to demonstrate Team work and team spirit and how to overcome the conflicts | | | Cloud Computing | After completion of the course the learner should be able to differentiate different computing techniques. | After completion of the course the learner should be able to compare various cloud computing providers/ Software. | De able to handle Open | After completion of the course the learner should be able to understand risks involved in cloud computing. | 1 | | | 8 | | | Sem | 7 Intelligent System | Students will develop a
basic understanding of
the building blocks of Al
as presented in terms of
intelligent agents. | Students will be able to choose an appropriate problem-solving method and knowledge-representation scheme. | Students will develop an
ability to analyze and
formalize the problem (at
a state space, graph, etc
and select the appropriat
search method. | develop/demonstrate/
s build simple intelligent
) systems or classical toy | | | | | | | | Wireless Technology | Understand the new
trends in mobile/wireless
communications network | Understand the characteristics of mobile/wireless communication channels | Understand the multiple radio access techniques | Understand the multiuse detection techniques | r | | | Po | MIGINEER | | | E- Commerce and
EBusiness | | | | | | | | 100 | 8008 | | | Project I | The learner should be able to prepare a synopsi of the work selected. | 5 | | | | | | 11/2 | THEEN | | | 1 | | | | | | | | | | - | | Storage Network
Management and
Retrieval | Students will be able to
evaluate storage
architectures, including
storage subsystems,
SAN, NAS, and IP-SAN,
also define backup,
recovery. | Examine emerging | Define information
ratrieval in storage
network and identify
different storage
virtualization technologies. | | | | | | |-------|--
---|--------------------------|---|--|--|---|--|--| | | Big Data Analytics | At the end of this course a
student will be able to
understand the key issues
in big data management
and its associated
applications in intelligent
business and scientific
computing. | enabling techniques and | student will be able to | At the end of this course a
student will be able to
achieve adequate
perspectives of big data
analytics in various
applications like
recommender systems,
social media applications
etc. | | | | | | Sem 8 | Computer Simulation and Modeling | Understand the meaning
of simulation and its
importance in business,
science, engineering,
industry and services | event system simulation. | Understand simulation
languages Abitity to
analyze events and inter-
arrival time, arrival
process, queuring
strategies, resources and
disposal of entities | An ability to perform a
simulation using
spreadsheets as well as
simulation
language/package | Ability to generate
pseudorandom numbers
using the Linear
Congruential Method | Ability to define random
variate generators for
finite random variables | Ability to enalyze and fit
the collected data to
different distributions | | | | Software Testing &
Quality Assurance | | | | | | | | | | | Project II | The learner should be able to demonstrate the product that is implemented. | | The learner should be
able to able to work in
team and communicate
with peers. | The learner should be able to develop skills required by the industry | | | | | 3 # THEEM COLLEGE OF ENGINEERING, BOISAR ### Approved By AICTE (New Delhi) Government of Maharashtra & DTE Affiliated To University of Mumbai ▲ Village Betegaon, Near Union Park, Boisar Chilhar Road, Boisar (E), Tal.-Dist.-Palghar, 401501. Tel: - (02525) 284909 / 284926, Telefax: (02525) 284 927 ●Email ID: info@theemcoe.org ●Website: www.theemcoe.org ### PO's and CO's ## Department of Mechanical Engineering: - ### PO's Engineering Graduates will be able to: PO-1: Apply basic knowledge of mathematics, science and engineering principles to solve technical problems, related directly to Mechanical Engineering. PO-2: Design and analyze system components, or processes, to meet the desired needs in Mechanical Engineering. PO-3: Design system and conduct experiments to find suitable solution in the field of Mechanical engineering. PO-4: Identify, visualize, formulate and solve engineering problems in the field of Mechanical Engineering. PO-5: Ability to bring technology transfer to toil the society and environment. Use techniques, skills, and modern engineering tools necessary for engineering practice with appropriate considerations for constraints. PO-6: Ability to use adaptable research solutions to showcase impact of technology development on society, by applying scientific reasoning methodologies, appropriate and relevant skills towards the understanding of the impact of engineering solutions on the society in a global and PO-7: Impart knowledge on contemporary issues about society and environment. PO-8: Apply ethical principles and responsibilities during professional practice. PO-9: Function effectively as team member/leader in a multi-disciplinary team and create user friendly environment. PO-10: Communicate effectively in oral, written, visual and graphical modes within team, and group environments. PO-11: Apply different techniques, skills and modern engineering tools necessary for engineering projects. PO-12: Recognize the need for professional advancement by engaging in lifelong learning. #### CO'S | 1000 | | 4 | | | | | | |-------|--|--|---|--|---|---|--| | | Applied Mathematics | Demonstrate the ability of
using Laplace Transform in
solving the Ordinary
Differential Equations and
Partial Differential Equations | Demonstrate the ability of using Fourier Series in solving the Ordinary Differential Equations and Partial Differential Equations | Solve initial and boundary
value problems involving
ordinary differential
equations | Identify the analytic function,
harmonic function,
orthogonal trajectories | Apply bilinear transformations and conformal mappings | Identify the applicability of theorems and evaluate the contour integrals. | | | Thermodynamics | Demonstrate application of
the laws of thermodynamics
to wide range of systems. | Write steady flow energy equation for various flow and non-flow thermodynamic systems | Compute heat and work interactions in thermodynamics systems | Demonstrate the interrelations between thermodynamic functions to solve practical problems. | Use steam table and mollier chart to compute thermodynamics interactions | Compute efficiencies of hea
engines, power cycles etc. | | Sem 3 | Strength of Materials | Demonstrate fundamental knowledge about various types of loading and stresses induced. | Draw the SFD and BMD for different types of loads and support conditions | | Estimate the strain energy in mechanical elements. | Analyse the deflection in beams. | Analyse buckling and
bending phenomenon in
columns, struts and beams. | | | Production Process | Demonstrate understanding of casting process | Illustrate principles of forming processes | Demonstrate applications of
various types of welding
processes. | Differentiate chip forming processes such as turning, milling, drilling, etc. | illustrate the concept of
producing polymer
components and ceramic
components. | Distinguish between the conventional and modern machine tools. | | | Material Technology | Identify various crystal imperfections, deformation mechanisms, and strengthening mechanisms | Demonstrate understanding of various failure mechanisms of materials. | Interpret Iron-Iron carbide phase diagram, and different phases in microstructures of materials at different conditions. | Select appropriate heat treatment process for specific applications. | Identify effect of alloying elements on properties of steels | Illustrate basics of composite materials, Nanomaterials and smart materials. | | | Applied Mathematics | Solve the system of linear
equations using matrix
algebra with its specific rules | Demonstrate basics of vector calculus | Apply the concept of
probability distribution and
sampling theory to
engineering problems | Apply principles of vector calculus to the analysis of engineering problems | Identify, formulate and solve engineering problems | Illustrate basic theory of correlations and regression | | | Fluid Mechanics | Define properties of fluids and classification of fluids | Evaluate hydrostatic forces
on various surfaces and
predict stability of floating
bodies | Formulate and solve equations of the control volume for fluid flow systems | Apply Bernoulli?s equation to various flow measuring devices | Calculate resistance to flow of incompressible fluids through closed conduits and over surfaces | Apply fundamentals of compressible fluid flows to relevant systems | | Sem 4 | Industrial Electronics | Illustrate construction,
working principles and
applications of power
electronic switches | Identify rectifiers and inverters for dc and ac motor speed control | Develop circuits using
OPAMP and timer IC555 | Identify digital circuits for industrial applications | Illustrate the knowledge of
basic functioning of
microcontroller | Analyse speed-torque characteristics of electrical machines for speed control | | | Production Process II | Demonstrate understanding
of metal cutting principles
and mechanism | Identify cutting tool geometry
of single point and multipoint
cutting tool | Demonstrate various concepts of sheet metal forming operations | Demonstrate concepts and use of jigs and fixtures | Illustrate various non-
traditional machining
techniques | Illustrate concepts and applications of additive manufacturing | | | Kinematics of
Machinery | Define various components of mechanisms | Develop mechanisms to provide specific motion | Draw velocity and acceleration diagrams of various mechanisms | Draw Carn profile for the specific follower motion | Analyse forces in various gears | Select appropriate power
transmission for specific
application | | | Internal Combustion
Engines | Demonstrate the working of
different systems and
processes of S.I. engines | Demonstrate the working of
different
systems and
processes of C.I. engines | Illustrate the working of
lubrication, cooling and
supercharging systems. | Analyse engine performance | Illustrate emission norms and emission control | Comprehend the different
technological advances in
engines and alternate fuels | | | Mechanical
Measurement and
Control | Classify various types of
static characteristics and
types of errors occurring in
the system. | Classify and select proper
measuring instrument for
linear and angular
displacement | Classify and select proper
measuring instrument for
pressure and temperature
measurement | Design mathematical model of system/process for standard input responses | | Analyse the problems | domain specifications | sem 5 | Heat Transfer | | | | model for transient heat | mechanism of boiling and | Analyse different heat
exchangers and quantify
their performance | |-------|---------------------------------------|---|--|--|---|--|---| | | Dynamics of
Machinery | Demonstrate working
Principles of different types
of governors and Gyroscopic
effects on the mechanical
systems | | Determine natural frequency of element/system | Determine vibration response of mechanical elements / systems | Design vibration isolation
system for a specific
application | Demonstrate basic concepts
of balancing of forces and
couples | | | Machining Sciences
And Tool Design | Calculate the values of various forces involved in the machining operations | Design various single and multipoint cutting tools | Analyse heat generation in
machining operation and
coolant operations | Illustrate the properties of
various cutting tool materials
and hence select an
appropriate tool material for
particular machining
application | Demonstrate the inter-
relationship between cutting
parameters and machining
performance measures like
power requirement, cutting
time, tool life and surface
finish | Demonstrate basic concepts
of balancing of forces and
couples | | | Metrology and Quality
Engineering | | Illustrate working principle of measuring instruments and calibration methodology | Illustrate basic concepts and statistical methods in quality control | Demonstrate characteristics
of screw threads, gear
profile, and tool profile | Illustrate the different sampling techniques in quality control | Illustrate different
nondestructive techniques
used for quality evaluation | | | Machine Design ? I | Demonstrate understanding
of various design
considerations | Illustrate basic principles of machine design | Design machine elements
for static as well as dynamic
loading | Design machine elements on the basis of strength/ rigidity concepts | Use design data books in designing various components | Acquire skill in preparing
production drawings
pertaining to various design: | | Sem 6 | Finite Element
Analysis | Solve differential equations using weighted residual methods | Develop the finite element
equations to model
engineering problems
governed by second order
differential equations | Apply the basic finite
element formulation
techniques to solve
engineering problems by
using one dimensional
elements | Apply the basic finite
element formulation
techniques to solve
engineering problems by
using two dimensional
elements | Apply the basic finite
element formulation
techniques to find natural
frequency of single degree
of vibration system | Use commercial FEA software, to solve problems related to mechanical engineering | | | Refrigeration and Air
Conditioning | Demonstrate fundamental principles of refrigeration and air conditioning | Identify and locate various
important components of the
refrigeration and air
conditioning system | Illustrate various
refrigeration and air
conditioning processes
using psychometric chart | Design Air Conditioning
system using cooling load
calculations. | Estimate air conditioning system parameters | Demonstrate understanding of duct design concepts | | | Mechatronics | Identify the suitable sensor
and actuator for a
mechatronics system | Select suitable logic controls | Analyse continuous control
logics for standard input
conditions | Develop ladder logic programming | Design hydraulic/pneumatic circuits | Design a mechatronic system | | | Machine Design- II | Select appropriate gears for
power transmission on the
basis of given load and
speed. | Design gears based on the given conditions. | Select bearings for a given applications from the manufacturers catalogue. | Select and/or design belts for given applications. | Design cam and follower and clutches | | | | CAD/CAM/CAE | Identify proper computer graphics techniques for geometric modelling. | Transform, manipulate objects and store and manage data, | Prepare part programming applicable to CNC machines. | Use rapid prototyping and tooling concepts in any real life applications. | Identify the tools for Analysis of a complex engineering component. | | | | Mechanical Utility
Systems | Describe operating
principles of compressors
and pumps | Evaluate performance of reciprocating/rotary compressors | Evaluate performance of reciprocating/rotary compressors | Interpret possibilities of
energy conservation in
pumping and compressed
air systems | | | | Sem 7 | Production Planning and Control | To provide a comprehensive exposure to Production Planning & Control (PPC) and its significance in Industries. | To acquaint students with various activities of PPC. | To give insight into the
ongoing & futuristic trends in
the control of inventory. | To appraise about need and benefits of planning functions related to products and processes. | To give exposure to
production scheduling and
sequencing | | | | Power Plant
Engineering | Comprehend various equipments/systems utilized in power plants | Discuss types of reactors,
waste disposal issues in
nuclear power plants | Illustrate power plant economics | | | | | | Operations Research | illustrate the need to optimally utilize the resources in various types of industries. | Apply and analyze
mathematical optimization
functions to various
applications. | Demonstrate cost effective strategies in various applications in industry. | | | | | | Design of Mechanical
Systems | Design material handling
systems such as hoisting
mechanism of EOT Crane,
belt conveyors. | Design engine components
such as cylinder, piston,
connecting rod and
crankshaft from system
design point of view. | Design pumps for the given applications. | Prepare layout of machine tool gear box and select number of teeth on each gear. | | | | | Industrial Engineering and Management | Illustrate the need for optimization of resources and its significance in manufacturing industries, in order to enhance overall productivity. | Develop capability in
integrating knowledge of
design along with other
aspects of value addition in
the conceptualization and
manufacturing stage of
various products. | Demonstrate the concept of value analysis and its relevance. | Manage and implement
different concepts involved
in methods study and
understanding of work
content in different
situations. | Describe different aspects o
work system design and
facilities design pertinent to
manufacturing industries. | f Identify various cost
accounting and financial
management practices
widely applied in industries | | Sem 8 | Refrigeration and Air
Conditioning | Discuss fundamental refrigeration and air conditioning principles | Identify and locate various
important components of the
refrigeration and air
conditioning system | Illustrate various
refrigeration and air
conditioning processes
using psychometric chart | Design and analyze complete air conditioning system | | | | | Renewable Energy
Sources | Demonstrate need of
different renewable energy
sources and their
importance | Calculate and analyse utilization of solar and wind energy | Illustrate design of biogas plant | Estimate alternate energy sources India | | | | | Automobile
Engineering | Demonstrate & explain
various systems in an
automobile | Describe importance and features of different systems like axle, differential, brakes steering, suspension, wheel and balancing etc. | | | | |